Ivano Bertini 1940–2012

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application to Global Bertini Theorems

Let k be an infinite field of arbitrary characteristic, (A,M, K) a k-algebra of essentially finite type, with K/k separable and P a local property. We say that LBk(P) holds if: For the generic α = (α1, . . . , αn) ∈ k ⇒ P(AxαA) ⊆ P(A)∩V (xα)∩ UP (xα = ∑ αixi, 〈x1, . . . , xn〉 = M, UP non-empty open subset of SpecA and P(A) = {P ∈ SpecA|Ap is P}). We show that: LBK(P) holds ⇒ LBK(GP) holds for t...

متن کامل

Bertini for Macaulay2

Numerical algebraic geometry is the field of computational mathematics concerning the numerical solution of polynomial systems of equations. Bertini, a popular software package for computational applications of this field, includes implementations of a variety of algorithms based on polynomial homotopy continuation. The Macaulay2 package Bertini provides an interface to Bertini, making it possi...

متن کامل

Bertini Theorems over Finite Fields

Let X be a smooth quasiprojective subscheme of P of dimension m ≥ 0 over Fq. Then there exist homogeneous polynomials f over Fq for which the intersection of X and the hypersurface f = 0 is smooth. In fact, the set of such f has a positive density, equal to ζX(m + 1) −1, where ζX(s) = ZX(q −s) is the zeta function of X. An analogue for regular quasiprojective schemes over Z is proved, assuming ...

متن کامل

Lorenzo Bertini ( Univ . La Sapienza ,

S OF TALKS: Márton Balázs (University of Wisconsin): Construction of the zero range process and a deposition model with superlinear growth rates (Joint work with Firas Rassoul-Agha and Timo Seppäläinen) Construction of the zero range process and some related deposition processes is available following the methods initiated by T. M. Liggett and F. Spitzer, and E. D. Andjel. These methods work un...

متن کامل

Numerically Solving Polynomial Systems with Bertini

Numerically Solving Polynomial Systems with Bertini • approaches numerical algebraic geometry from a user's point of view with many worked examples, • teaches how to use Bertini and includes a complete reference guide, • treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature Chemical Biology

سال: 2012

ISSN: 1552-4450,1552-4469

DOI: 10.1038/nchembio.1072